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1. INTRODUCTION 

Attempts to link the relationship between mechanical response measurements and gun perfor- 
mance have made progress in the past 8 years.1"12 Early work revealed that conventional mechanical 
parameters did not relate well to fracture susceptibility. The search for a simple mechanical 
parameter that could measure the propensity for a propellant to generate surface area upon 
mechanical failure resulted in the development of a failure parameter called the failure modulus,3 Ef, 
that measures the rate at which the material strength is lost as a function of strain after material failure 
has begun. This parameter has been used as a guide in the development of new propellants to ensure 
that improvements in formulation and processing did not degrade the mechanical response charac- 
teristics of the material, which could result in poor performance and increased vulnerability response. 
It has also been successfully used to evaluate the relative fracture susceptibility among various 
propellant lots, or between unconditioned propellant and propellant that has been subjected to special 
conditioning that may affect its mechanical response, e.g., thermal cycling. 

The failure modulus showed indications of direct usefulness when the changes of the vulnerabil- 
ity response related directly to changes measured in this parameter.2 A correlation was found for 
propellant beds at low temperature subject to a shaped charge jet attack and led to other studies that 
attempted to make the correlation more direct. However, the relationship was made between changes 
in both responses, rather than directly relating the responses themselves. Most recently, a direct link 
between this failure parameter and a measure of the amount of fracture-generated surface area 
produced when M30 propellant was uniaxially compressed.12 The failure modulus was measured 
and enough grains were damaged so that closed bomb firings could be performed to determine how 
the grain damage affected the pressure generation. A small (21 cc) closed bomb was used so that large 
numbers of grains did not have to be damaged to reach gun-like pressures in the closed vessel. After 
the burning rate was established using undamaged grains, the pressure-time curves from damaged 
propellant were analyzed for surface area, which produced a profile in the form of the surface area 
versus fraction of the charge burned. Analyzing these results showed that the intercept of the profile 
curve on the surface area axis, derived by fitting the initial 10% of the curve to a least squares fit 
straight line, was directly related to the logarithm of the failure modulus. The three resulting curves, 
one for each level of strain, fell into a series that permitted the effective surface area profile to be 
predicted for any combination of failure modulus and the strain level within the fracture domain. 
These results provided a method for assessing fracture damage for the M30 propellant by means of 
a simple mechanical measurement. In this study, the same procedure was applied to the nitramine 
composite propellant, M43. 

2. EXPERIMENTAL PROCEDURE 

2.1 Mechanical Response Measurement 

The propellant response was measured using a specially designed servohydraulic tester,4 

illustrated in Figure 1. The machine allows for compression measurements to be performed at rates 
as great as 1000 s"1 for a specimen with a nominal length of 1 cm. Compression is arrested when 
contact occurs between the impact bell and cone. Therefore, the amount of specimen compression 
can be accurately predetermined by setting the anvil height. This contact between bell and cone not 
only stops the specimen compression, but it also shunts the force around the specimen. The nitrogen 
spring absorbs the mechanical energy and moderates the deceleration rate of the massive ram. The 

l 



force applied to the specimen is measured using the gauge inside the impact bell. During compressive 
response measurements, displacement is measured with a linear variable differential transformer in 
the actuator column and is corrected for machine stiffness. 

The specimens were prepared from multiper- 
forated M43 gun propellant grains whose formu- 
lation is listed in Table 1. The specimen prepa- 
ration procedure began by cutting the sample 
with a diamond saw to a length of 1.00 cm. The 
ends were cut flat, paralleled perpendicular to 
the grain axis according to the specifications in 
an updated version of the test entitled "Uniaxial 
Compressive Gun Propellant Test".13 Tempera- 
ture conditioning was achieved by placing pre- 
pared grains inside the environmental chamber 
for a time at least twice that needed to reach 
thermal equilibrium (a total of 30 minutes). The 
specimen was then placed on the anvil and com- 
pressed. This testing took place within the con- 
ditioning chamber, so no transfer was required 
and, therefore, no thermal disruption occurred. 

The final strain to which the specimen was 
taken is determined by the distance between the 
anvil and the force gauge when the bell and cone 
surfaces are mated. That distance was deter- 
mined by placing a lead specimen on the anvil 
and performing a compression. This allowed for 
any dynamic affects to be taken into account that 
may have been overlooked in a static measure- 
ment. The percentage strain used in these tests 
was selected to be 50, 20, and 10%. From 
previous testing, it is known that failure of the 
grain occurs between 2 to 4% strain, depending 
upon strain rate and temperature. 

The parameters measured in a response charac- 
terization test are the modulus (E), maximum stress 
(cm), strain at maximum stress (em), stress at failure 
(af), strain at failure (ef), and failure modulus (Ef). 
The definitions of these parameters are illustrated in 
Figure 2. The failure modulus is the slope of the 
stress-strain curve in the near-linear region between 
strain at maximum stress and twice that value. If no 
maximum stress occurs in the region of failure, the 
failure modulus is measured between the strain at 

Table 1. Nominal Percent Composition of M43 

Component Percent Composition 

Nitrocellulose (NC) 4 
NC Nitration Level 12.6 

RDX (Ground)) 76 
Cellulose Acetate Butyrate 12 
Plasticizer 8 

Conditioning Box 

Figure 1. Servohydraulic Tester 
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failure and three times that value. Measurement of the failure modulus was made at -40, -20,0,20,40, 
and 60° C, and the reported values were determined from the average curve generated from five response 
curves, except in the -40° C case. At -40° C, the response of M43 was extremely brittle and failure occurred 
over a wide range of strain, which caused the average curve to be much less meaningful. At this 
temperature, therefore, the parameters listed were determined for the individual response curve and were 
then averaged. The specimen strain rate was chosen to be 100 s"1, which is the order of strain rate 
encountered by the grains during a ballistic firing. 

2.2 Fracture Generated Surface Area Measurement 

The grains, damaged by uniaxial compression as outlined above, were burned in a mini-closed 
bomb (MCB) to determine the effect that the mechanical damage had on the pressure generation of 
the propellant. The MCB is a special, small-volume closed bomb.5 The rate of pressurization during 
combustion is controlled by the intrinsic burning rate of the propellant and the surface area exposed 
to the flame. Since M43 is a low-vulnerability propellant and sometimes is difficult to ignite, 0.1 g 
of black powder was used as an ignition aid. After the propellant was burned and the resulting 
pressure-time curves acquired, the evolving surface area of the charge could be determined using the 
established burning rate of the propellant. 

Undamaged specimens were burned in the MCB at the same loading density that was used in the 
damaged grain firings. These pressure-time traces were analyzed using the closed bomb reduction 
code BRLCB14 to establish the burning rates for the M43 propellant for these tests. Once established, 
the surface area from all the pressure-time histories can be determined using the same code. The 
output from the code provides pressure in MPa and the corresponding surface area in square 
centimeters. This output was converted to intrinsic parameters of fraction burned and surface area 
ratio (S/S0), by dividing the pressure by the maximum pressure and the surface area by the initial 
surface area of the undamaged grain (S0), respectively. This allowed closed bomb runs with different 
charge masses, and corresponding pressure differences, etc., to be compared. 

2.3 Details of the Experiment 

Enough grains were damaged to provide two closed bomb firings for each temperature-strain 
condition. The initial series of tests done with M30 propellant12 showed that two closed bomb firings 
could be performed with reasonable assurance of agreement. If the results from the two identically 
damaged propellant charges varied significantly, subsequent closed bomb tests were performed to 
resolve the differences. With six temperatures and three end strain conditions, a total of 45 closed 
bomb tests was conducted. This included some instances in which more that two firings were 
performed to verify the repeatability of the process. 

3.   RESULTS 

The uniaxial compressive mechanical response of M43 propellant is shown in the stress versus 
strain curves presented in Figure 3. From these curves, the failure modulus is calculated as outlined 
above. Results of some mechanical property measurements are shown in Table 2. Figure 4 shows 
the natural log of the failure modulus plotted against temperature and indicates the nature of the 
response. These plots indicate that fracture very rapidly becomes more significant at lower 
temperatures. This is also reflected by the physical appearance of the grains after testing. Figure 5 
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shows typical 50% strain specimens after uniaxial 
compression. Figure 5c is included for compari- 
son. It shows how M30 maintains greater integ- 
rity and shows the reduced level of fracture when 
damaged under the same conditions as M43 
propellant. The failure modulus values reflect 
the increase in fracture observed in the tested 
specimens, but more importantly, the magnitude 
of Ef quantifies the extent of the fracture. 

For each closed bomb firing, a surface area 
ratio versus fraction burned plot was obtained, as 
described above, which reflected the amount of 
surface area available to the flame throughout the 
propellant combustion. Figure 6 shows the theo- 
retical and typical experimental values for the 
surface area ratio versus fraction burned for un- 
damaged grains. Note that as the 19-perforated 
grains burn the surface area increases. This is due 
to the nature of the progressive grain design. This 
area profile is required to provide the gun with its 
designed performance. Any deviation from this 
profile reduces performance and in cases of se- 
vere deviation, can produce chamber pressure 
waves that can lead to catastrophic gun failure. 
The surface area profiles shown in Figure 7 are 
for grains damaged to 50% end strain at three 
temperatures. These deviations from the profile 
required for efficient gun firing are much more 
severe than those observed for M30 propellant12 

by about a factor of 3 and extend for much greater 
fraction burned. If the M43 surface area profiles 
observed here were present during a large caliber 
gun firing, large pressure variations would be 
present within the gun. The profiles for these 
damaged grai: were analyzed using the proce- 
dure outlined beiow. 

4.   ANALYSIS 

4.1 Method of Analysis 

Many attempts were made in the previous 
study12 with M30 propellant to associate the 
surface area curves obtained from the closed 
bomb results to the failure modulus: curve aver- 

Table 2. Mechanical Response Parameters 

T Stress at Strain at Modulus Failure 
Failure Failure Modulus 

(°C) (MPa) (%) (GPa) (GPa) 

-40 122 2.75 5.97 -18.40 
-20 140 3.40 5.28 -12.50 
0 124 3.25 5.53 -1.58 

21 92 3.01 4.30 -0.43 
40 65 2.87 2.95 -0.27 
60 52 2.56 2.59 -0.19 
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aging, a comparison of areas under curves to a certain fraction burned, shifting of curves to match 
minimum surface area values, primary and secondary S/S0 curve intercepts, and several other 
methods. The method that seemed to best characterize the deviation reflected in the curves and was 
still simple enough to be applied easily is described below. 

The initial amount of surface area (Sp available to the flame and the evolution ofthat surface area 
are both very important to the pressure generation rate during the early portion of the ballistic cycle. 
It would be desirable to incorporate into a set of numbers a measure of mass (pressure) generation 
deviation that can be expected due to fracture damage. To date, the method that best exhibits this 
information for the conditions thus far examined is to fit the points of the S/S0 versus fraction burned 
curve, to 10% fraction burned, to a least squares fit. The intercept of this line (S/S0) and its slope 
(M) characterize the important features mentioned above. The intercept indicates the initial surface 
area due to fracture, and the slope indicates the evolution of the area as the charge burns. (Three such 
lines are shown in Figure 7.) There are several reasons why this approach reflects critical aspects 
of mass generation within the gun. First, the conditions that result in significant deviations from 
planned mass generation within the gun are established very early in the ballistic cycle. Thus, it 
makes sense to use only the information contained in the early burning of the charge, i.e., the first 
10%. If surface area variances begin to occur later in the cycle, the performance will be affected, but 
the chamber volume has increased significantly (and is continuing to rapidly expand), so that excess 
pressurization is more difficult to generate and pressure variations are likely to be less severe than 
those occurring at much smaller chamber volumes. Next, this method uses more than a few initial 
points to determine the value of the parameters being used to characterize the increased surface area. 
Those familiar with closed bomb analysis know that the most uncertain values generated in the 
process are those obtained at low fraction burned. This method of curve fitting eliminates the 
dependence of the value obtained from a few points in early, uncertain region, while still using values 
in this early combustion region to influence the parameter value. And lastly, by incorporating the 
points at higher fraction burned, i.e., to 10%, a measure of how the fracture generated surface area 
is evolving can be determined. 

4.2 Results of Analysis 

The above analysis procedure was applied to each of the closed bomb data sets. The intercept 
(S./S0) of the linear least squares fit of S/S0 versus fraction burned curve between the maximum value 
ofS/S0 and the value of S/S0 at 10% fraction burned was obtained for the average curve for each end 
strain and temperature condition. To provide equal weight to each portion of the curve between the 
points being fit, values of S/S0 were calculated at equal intervals of fraction burned, i.e., AFB = 0.002, 
based on a linear interpolation between data points. This was necessary because high S/S0 values 
cause more propellant to be consumed per unit time. Since data are recorded at equal time intervals, 
the representation of the data by intervals of fraction burned resulted in larger intervals between data 
points for higher values of S/S0. Since greater levels of propellant damage result in higher initial 
values of S/S0, for severely fractured grains, there was a significantly lower density of data points 
at higher values of S/S0. This lower point density can skew the fitted curve by affecting the intercept 
and slope, as can be seen in Figure 8. The linear interpolation procedure described above was 
employed to make the derived parameters more sensitive to fracture damage. The average values 
derived from this procedure appear in Table 3 along with the corresponding values of the failure 
modulus. 



Table 3. Average Values of Failure and Surface Area Ratio Parameters 

Temperature Ef Ln(-Ef) Average Intercept (S/S^ Average Slope (M) 
(°C) (GPa) 50%    20%        10% 50%       20%       10% 

60.0 -0.19 -1.655 52.9    9.74 -500       -102 
40.0 -0.27 -1.295 58.9    7.92 -352      -68.6 
20.0 -0.43 -0.837 60.9    23.4 -220       -249 
0.0 -1.58 0.457 78.1    43.7       19.8 -591       -401       -231 

-20.0 -12.50 2.526 92.4    46.3       27.5 -450       -560       -305 
-40.0 -18.40 2.912 106.5   61.6       24.5 -351       -509       -296 
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If these intercept values are plotted against 
the logarithm of the failure modulus for each of 
the end strain levels and a linear least squares fit 
is made to the points, the plots in Figure 9 result. 
Plots similar to those in Figure 9 were generated 
for M30 propellant,12 and resulted in linear rela- 
tionships being demonstrated between both the 
intercepts and slope values of the lines and the 
end strain values of each line. This permitted 
characterization of the initial surface area and its 
evolution over the first 10% of fraction burned in 
terms of the end strain, the failure modulus, and 
the fraction burned. This same relationship is 
only partially realized for M43 propellant. If the 
fitting parameters from the straight lines in Fig- 
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ure 9a are plotted against end strain, the fitting constants show a linear dependence with end strain, 
as shown in Figure 10a. However, a plot of the fitting slopesofthe lines in Figure 9a versus end strain 
show that the relation does not appear linear but seems to be more plateau-like. The curve runs from 
2.52 at 10% end strain to a value of 10.5 somewhere between 10 and 20% end strain and then remains 
at that level. This implies that at higher end strain levels (somewhere between 10 and 20%) the rate 
of initial surface area increase with ln(-Ef) becomes constant. This is consistent with the mechanical 
response curves, shown in Figure 3, which show that for curves with a lower failure modulus value 
(below -1.00), the material has no strength above 20% strain. This implies that almost all the damage 
done to the propellant under those conditions occurred before 20% strain and that very little 
additional damage is done afterward. If the equations in Figure 10 are substituted into the 
relationships shown in Figure 9a, the S/S0 versus fraction burned curve intercept can be represented 
in the general form y = [intercept] + [slope] ln(Ej) 

for 10% < e < 20%, by 

Sj/S0 (e, Ef) = [3.9769 + 1.3336 e] +[-5.36 + 0.788 e] In (-Ef); (1) 

and for e > 20%, by 

S/S0 (£, Ef) = [3.9769 + 1.3336 e] + [10.27 + 0.007e] In (-Ef). (2) 

These relationships can be used to predict values of effective initial fracture-generated surface area, 
given the measured failure modulus, and the end strain. Figure 11 shows a plot of these equations. 

As mentioned above, a similar result was obtained for the slope of the line that is fit to the average 
S/S0 versus fraction burned curves for M30. The values of average slope for M43 appear in Table 3 
and are plotted against ln(-Ef) in Figure 9b. Again, the 10% and 20% data are compatible with a linear 
dependence with ln(-Ef). Least squares best fits can be performed on these points to characterize the 
evolution of the surface area as a function of fraction burned, but only to about 20% end strain. As 
can be seen for the 50% end strain, the points are very scattered and no linear correlation with Ln(-Ef) 
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exists. In the case of M30, the evolution of the curve was characterized by increasing initial surface 
area with lower values of Ef and higher strains. As the charge burned, the further the initial value 
was from the original programed value, the more rapidly the surface area attempted to return to the 
programmed surface area value. This result implies that there was still some memory in the damaged 
structure of the programmed value of the grain. For M43, somewhere above 20% strain it seems as 
if the evolution of surface area has lost most of its dependence on the initial structure of the propellant 
grain. This situation results in unstable evolution of S/S0 and can lead to erratic mass generation 
processes similar to conventional bulk-loaded liquid propellant combustion, where the evolution of 
effective surface area can sometimes be very erratic. However, when the same operation is 
performed on the constants and coefficients of the equations of the lines found in Figure 9b, for 20% 
end strain and lower, the coefficient of the effective surface area curve can be approximated, as 
above, by placing the appropriate end strain and failure modulus values in the following equation: 

for 10% < e < 20%, 

Slope (e, Ef)   = [-159 - 6.05 e] + [41.2 - 7.07 e] In (-Ef); (3) 



for e > 20% end strain, the evolution of the surface area profile seems to be erratic. 

These equations can be combined to produce the effective surface area profile versus fraction 
burned (usually designated as Z) for the first 10% of the fraction burned for some of the conditions 
studied here. 

For an end strain between 10 and 20%, 

S/S0 (e, Ep Z) = Sj/S0 (e, Ef) + Slope (e, Ef) Z 
= [3.9769+1.3336 e+(-5.36 +0.788 e) In (-Ef)]+ [-159-6.05 e 

+ (41.2 - 7.07 e) In (-Ef)] Z. (4) 

For end strains greater than 20%, the initial surface area ratio can be given by 

S/S0 (e, Ef)     = [3.9769 + 1.3336 e] + [10.27 + 0.007e] In (-Ef), (5) 

with the surface area evolution somewhat erratic. 

The domain over which these relationships can be expected to apply is somewhat unclear. Since 
it is unknown exactly at what end strain the plateau edge begins in Figure 10b and at exactly what 
end strain above 20% the evolution of surface area becomes erratic (Figure 9b), the equations 
presented have made assumptions that the end strain for both of these boundaries is about 20%. In 
any case, the value of strain must be above 10% to use these equations. 

5.   DISCUSSION 

The above equations can be used for several purposes. As stated, if the stress state of the 
propellant grain is known and the failure modulus has been measured, then the effect of the initial 
surface area can be evaluated. The effects of the augmented surface area on combustion for the first 
10% of fraction burned can be evaluated by using Equation 4 to predict an effective surface area 
profile during the early combustion as long as the end strain conditions are not violated. The 
prediction may not, however, show the dynamic effects of the surface area evolution that could affect 
the generation and propagation of pressure waves within the gun chamber, e.g., the enhancement of 
combustibility resulting from freshly fractured surfaces, but it should, nonetheless, provide a more 
accurate assessment of the dynamic pressures. 

These equations could also be used to predict conditions in which fracture-generated surface may 
become a significant problem. The time-temperature equivalence of M43 and other propellants has 
been established9 over the temperature range of ballistic interest and has been related to the strain rate 
for more than four orders of magnitude.10 Using this information, the strain state of a propellant can 
be predicted for a certain strain rate deformation, at a particular temperature. In the referenced 
studies, it was shown that the time-temperature equivalency could be extended to predict the failure 
modulus, as well. This allows for an estimation of the degree of damage and its effect on combustion 
for a wide variety of conditions, even those outside the area of available physical measurement. If 
ballistic codes are used to show when certain surface area profiles subject a system to unacceptable 
performance, these equations can be used with the appropriate mechanical response parameters to 
predict when and where these conditions are likely to arise. 
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Other uses will become evident as the application or problem becomes more well defined. For 
a long time, the modeling community has had to rely on relatively arbitrary surface area augmentation 
algorithms. Now, for both M30 and M43, a method is available that relates a relatively easily 
determined mechanical parameter to a surface area profile during the early phase of combustion. 

6. CONCLUSIONS 

A correlation has been established that relates the end strain state of uniaxially compressed M43 gun 
propellant grains to a surface area profile that characterizes fracture-generated surface area during early 
combustion. This correlation is based on an easily measured mechanical parameter called the failure 
modulus. This parameter, shown in an earlier study to predict fracture surface area profiles for damaged 
M30 propellant,12 has been shown to predict the initial surface area ratio for grains tested to 50% strain 
over a temperature range of -40° C to 60° C. In addition, the evolution of that surface area has been 
characterized for grains undergoing compression to levels as high as 20%. Between 20 and 50% 
compression, the evolution of the fracture surface area was measured to be erratic. This may be the result 
of the extremely brittle nature of the response that produces very large S/S0 values and causes the loss of 
load-bearing ability of the material. The damage being done to the grain is thereby done at an unknown 
strain level. 

The effective surface area profile during early combustion has been related to the logarithm of 
the failure modulus for each of the end strain conditions tested, and the parameters determined in 
these linear correlations (the constant and coefficient of each relationship) have been shown to be 
linear functions of the strain. The result of this is a method by which an equivalent surface area profile 
can be generated, based on the level of strain and the established failure modulus, that has wide 
application in the modeling and propellant development communities. 

7. FUTURE STUDIES 

This is the second propellant type to undergo this series of tests. Tests are currently under way 
to characterize single (M14) and double (JA2) base propellants. Initial results from these studies 
indicate that the level of fracture surface area generated in both of these propellant types is 
significantly lower than for M30 tested under similar conditions, which would make them very much 
less fracture susceptible than M43. While these results were qualitatively known, the assignment of 
specific surface area values as a function of simply measured parameters is a great aid in predicting 
changes in performance due to fracture generation. Also, in this current study, to clarify the domain 
over which the stated equations are valid, additional tests at selected end strain levels will be required. 
This added information, along with the time-temperature equivalency established for each of these 
groups, should provide a valuable tool to predict the augmentation of pressure generation attributable 
to fracture damage in ballistic systems. 
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